Math, asked by sum0ari5nloyaam, 1 year ago

1/sec theta-tan theta-1/cos theta= 1/cos theta- 1/sec theta+tan theta

Answers

Answered by adventureisland
168

Proof:

Taking LHS,

\frac{1}{\sec \theta-\tan \theta}-\frac{1}{\cos \theta}=\frac{1}{\cos \theta}-\frac{1}{\sec \theta+\tan \theta}

substituting\sec ^{2} \theta-\tan ^{2} \theta=1,

\frac{1}{\sec \theta-\tan \theta}-\frac{1}{\cos \theta}

\frac{\sec ^{2} \theta-\tan ^{2} \theta}{\sec \theta-\tan \theta}-\frac{1}{\cos \theta}

\frac{(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)}{\sec \theta-\tan \theta}-\frac{1}{\cos \theta}

\sec \theta+\tan \theta-\frac{1}{\cos \theta}

\frac{(\sec \theta+\tan \theta) \cos \theta-1}{\cos \theta}

\frac{\sec \theta \cos \theta+\tan \theta \cos \theta-1}{\cos \theta}

\frac{1-1+\frac{\sin \theta}{\cos \theta}}{\cos \theta}

\frac{\sin \theta}{\cos \theta}=\tan \theta=L H S

taking RHS,

\frac{1}{\cos \theta}-\frac{1}{\sec \theta+\tan \theta}

substituting \sec ^{2} \theta-\tan ^{2} \theta=1,

\frac{1}{\cos \theta}-\frac{\sec ^{2} \theta-\tan ^{2} \theta}{\sec \theta+\tan \theta}

\frac{1}{\cos \theta}-\frac{(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)}{\sec \theta+\tan \theta}

\frac{1}{\cos \theta}-(\sec \theta-\tan \theta)

\frac{1}{\cos \theta}-\sec \theta+\tan \theta

\frac{1-\cos \theta \sec \theta+\tan \theta \cos \theta}{\cos \theta}

\frac{1-\cos \theta \frac{1}{\cos \theta}+\tan \theta \cos \theta}{\cos \theta}

1-1+\tan \theta=\tan \theta=R H S

L H S=R H S

Hence Proved.

Answered by mysticd
132

Answer:

 \frac{1}{sec\theta-tan\theta}-\frac{1}{cos\theta}\\=\frac{1}{cos\theta}-\frac{1}{sec\theta+tan\theta}

Step-by-step explanation:

LHS = \frac{1}{sec\theta-tan\theta}-\frac{1}{cos\theta}\\=\frac{(sec\theta+tan\theta)}{(sec\theta-tan\theta)(sec\theta+tan\theta)}-\frac{1}{cos\theta}\\=\frac{(sec\theta+tan\theta)}{(sec^{2}\theta-tan^{2}\theta)}-\frac{1}{cos\theta}\\=\frac{(sec\theta+tan\theta)}{1}-sec\theta\\=sec\theta+(tan\theta-sec\theta)\\=sec\theta-(sec\theta-tan\theta)\\=sec\theta -\frac{(sec\theta-tan\theta)(sec\theta+tan\theta)}{sec\theta+tan\theta}

=\frac{1}{cos\theta}-\frac{sec^{2}\theta-tan^{2}\theta}{sec\theta+tan\theta}\\=\frac{1}{cos\theta}-\frac{1}{sec\theta+tan\theta}\\=RHS

Therefore,

 \frac{1}{sec\theta-tan\theta}-\frac{1}{cos\theta}\\=\frac{1}{cos\theta}-\frac{1}{sec\theta+tan\theta}

•••♪

Similar questions