1/ sec²1 by sin square theta minus cos square theta + 1 by cosec squared theta minus sin square theta the whole into sin square theta cos square theta is equal to 1 minus sin square theta cos square theta by 2 + sin square theta cos square theta
Answers
Step-by-step explanation:
(1/Sec^2 theta - Cos^2 theta} + (1/Cosec^2 theta - Sin^2 theta ) x Sin^2 theta Cos^2 theta
= (1 -Sin^2 theta Cos^2 theta)(2 + Sin^2 theta Cos^2 theta}
LHS = (1/(Sec^2 theta - Cos^2 theta) + (1 /Cosec^2 theta - Sin^2 theta) Sin^2 theta x Cos^2 theta
Secθ = 1/Cosθ & Cosecθ = 1/Sinθ
= [1/(1/Cos^2 theta) - Cos^2 theta] + [1/(1/Sin^2 theta)] - Sin^2 theta] x Sin^2\theta Cos^2\theta
= ({Cos^2 theta}{1 - Cos^4 theta} +(Sin^2 theta}{1 - Sin^4 theta}) x Sin^2 theta Cos^2 theta
= ({Cos^2\theta}{(1 + Cos^2\theta)(1 - Cos^2\theta)} + {Sin^2\theta}{(1 + Sin^2\theta)(1 - Sin^2\theta)}) \times Sin^2\theta Cos^2\theta
= ({Cos^2\theta}{(1 + Cos^2\theta)(Sin^2\theta)} + {Sin^2\theta}{(1 + Sin^2\theta)(Cos^2\theta)}) \times Sin^2\theta Cos^2\theta
= ({Cos^4\theta + Cos^4\theta Sin^2\theta + Sin^4\theta + Sin^4\theta Cos^2\theta}{(1 + Cos^2\theta)(Sin^2\theta)(1 + Sin^2\theta)(Cos^2\theta)}) Sin^2\theta Cos^2\theta
={Cos^4\theta + Cos^2\theta Sin^2\theta (Cos^2\theta + Sin^2\theta) + Sin^4\theta }{1 + Cos^2\theta + Sin^2\theta + Cos^2\theta Sin^2\theta}
= {Cos^4\theta + Cos^2\theta Sin^2\theta (1) + Sin^4\theta }{1 + 1 + Cos^2\theta Sin^2\theta}
= { (Cos^2\theta + Sin^2\theta )^2 - Cos^2\theta Sin^2\theta}{2+ Cos^2\theta Sin^2\theta}
= { (1 )^2 - Cos^2\theta Sin^2\theta}{2+ Cos^2\theta Sin^2\theta}
= { 1 - Sin^2\theta Cos^2\theta }{2+ Sin^2\theta Cos^2\theta}
= RHS
HOPE THIS HELPS..............
Answer:
Step-by-step explanation:
Lhs= 1 upon sec²theta - cos²theta + 1 upon cosec²theta -sin² theta×sin²theta × cos² theta