1/sec2x - cos2x+1/cosec2-sin2x × sin2xcos2x = 1-sin2xcos2/2+sin2xcos2x
Answers
Answered by
1
Step-by-step explanation:
We have to prove that 1−sin2xcos2x=cos2x1+sin2x
To do this we transform left side:
1−sin2xcos2x=(sin2x+cos2x)−2sinxcosxcos2x
=sin2x−2sinxcosx+cos2xcos2x−sin2x
=(sinx−cosx)2(cosx−sinx)(cosx+sinx)
=(sinx−cosx)2−(sinx−cosx)(sinx+cosx)
=cosx−sinxcosx+sinx
Now we expand the expresion by multiplying both numerator and denominator by (cosx+sinx)
So we get:
(cosx−sinx)(cosx+sinx)(cosx+sinx)2
=cos2x−sin2xcos2x+2cosxsinx+sin2x
=cos2x1+sin2x
i hope it is helpfull
plz mark as brainlist answer.....
Similar questions