Math, asked by parul4345, 1 year ago

1/secA -tanA-1/cos A =1/cos A - 1/secA +tanA

Answers

Answered by harendrachoubay
2

\dfrac{1}{\sec A -\tan A}-\dfrac{1}{\cos A}=\dfrac{1}{cos A}-\dfrac{1}{\sec A+\tan A}, proved.

Step-by-step explanation:

Prove that, \dfrac{1}{\sec A -\tan A}-\dfrac{1}{\cos A}=\dfrac{1}{cos A}-\dfrac{1}{\sec A+\tan A}.

L.H.S.=\dfrac{1}{\sec A -\tan A}-\dfrac{1}{\cos A}

=\dfrac{1}{\sec A -\tan A}\times \dfrac{\sec A +\tan A}{\sec A +\tan A}-\dfrac{1}{\cos A}

=\dfrac{\sec A +\tan A}{\sec^2 A -\tan^2 A}-\dfrac{1}{\cos A}

=\sec A +\tan A-\sec A

[ ∵ \sec^2 A -\tan^2 A=1 and \sec A=\dfrac{1}{\cos A}]

=\tan A

R.H.S.=\dfrac{1}{cos A}-\dfrac{1}{\sec A+\tan A}

=\dfrac{1}{cos A}-\dfrac{1}{\sec A+\tan A}\times \dfrac{\sec A-\tan A}{\sec A-\tan A}

=\dfrac{1}{cos A}-\dfrac{\sec A-\tan A}{\sec^2 A-\tan^2 A}

=\sec A -(\sec A-\tan A)

=\sec A -\sec A+\tan A

=\tan A

∵ L.H.S. = R.H.S. =\tan A, proved,

Similar questions