1/(secA+tanA)-1/cosA=1/cos-1/(secA-tanA)
you have to prove this.
Answers
Answered by
0
Answer:
To prove this I am taking LHS first
Take RHS now
LHS = RHS
Hope it helps you
Step-by-step explanation:
Answered by
17
Taking R.H.S.
= 1/cosA - 1/(secA - tanA)
We know that, 1/cosA = secA and rationalize 1/(secA - tanA)
= secA - 1/[(secA + tanA)/(secA - tanA) (secA + tanA)]
Used identity: (a + b)(a - b) = a² - b²
= secA - (secA + tanA)/(sec²A - tan²A)
= secA - (secA + tanA)
= secA - secA - tanA
= - tanA
Taking L.H.S.
= 1/(secA + tanA) - 1/cosA
We know that, 1/cosA = secA and rationalize 1/(secA + tanA)
= (secA-tanA)/[(secA + tanA)(secA - tanA)] - secA
Used identity: (a + b)(a - b) = a² - b²
= (secA - tanA)/(sec²A - tan²A) -secA
= secA - tanA - secA
= - tanA
L.H.S = R.H.S.
Hence, proved.
Similar questions