Math, asked by Achuthe, 1 year ago

1+secA-tanA/1+secA+tanA=1-sinA/cosA

Answers

Answered by aanchal211
87
I think so..
it will definitely help u...
Attachments:
Answered by mysticd
55

Solution:

Given LHS = \frac{1+secA-tanA}{1+secA+tanA}

= \frac{sec^{2}A-tan^{2}A+secA-tanA}{1+secA+tanA}

/* By Trigonometric identity:

sec²A - tan²A = 1 */

= \frac{[(secA+tanA)(secA-tanA)+(secA-tanA)]}{(1+secA+tanA)}

/* By algebraic identity:

-b² = (a+b)(a-b) */

= \frac{(secA-tanA)(secA+tanA+1)}{(secA+tanA+1)}

After cancellation, we get

= secA-tanA

= \frac{1}{cosA}-\frac{sinA}{cosA}

= \frac{(1-sinA)}{cosA}

= RHS

Therefore,

\frac{1+secA-tanA}{1+secA+tanA}=\frac{(1-sinA)}{cosA}

••••

Similar questions