1-secA+tanA/1+secA-tanA=secA+tanA-1/secA+tanA+1
Answers
Answer:
to solve this let us first understand the properties :
[secA]^2 – [tanA]^2 = 1
and
a^2 - b^2 = (a+b)(a-b)
Now take the numerator of LHS:
1 - sec A - tan A
instead of 1 , I can write , [secA]^2 – [tanA]^2
So the numerator now becomes : [secA]^2 – [tanA]^2 - (sec A + tan A)
which I can write : (sec A + tan A)(sec A - tan A) - (sec A - tan A)
taking (sec A - tan A) common,
numerator becomes , (sec A - tan A) (sec A + tan A -1)
using the same way , for denominator, by writing [secA]^2 – [tanA]^2 instead of 1 , and then writing it in the form (sec A + tan A)(sec A - tan A) and then taking (sec A - tan A) common,
denominator becomes , (sec A - tan A) (sec A + tan A +1)
Now writing numerator and denominator together : [(sec A - tan A) (sec A + tan A -1) ] / [(sec A - tan A) (sec A + tan A +1) ]
= (secA+tanA-1) / (secA+tanA+1)
= RHS
Hence Proved !
Step-by-step explanation:
mark brainliest
Answer : RHS