1/secA-tanA=secA+tanA
Answers
Answered by
0
Answer:
Given LHS = \frac{1}{secA-tanA}
secA−tanA
1
On rationalizing we get,
\frac{1}{secA-tanA} * \frac{secA+tanA}{secA+tanA}
secA−tanA
1
∗
secA+tanA
secA+tanA
\frac{secA+tanA}{(secA-tanA)(secA+tanA)}
(secA−tanA)(secA+tanA)
secA+tanA
\frac{secA+tanA}{sec^2A-tan^2A}
sec
2
A−tan
2
A
secA+tanA
\frac{secA+tanA}{1}
1
secA+tanA
secA+tanA.
LHS = RHS.
Similar questions