Math, asked by sachinjoshi22861, 10 months ago

1/secA-tanA=secA+tanA​

Answers

Answered by ritikstar5
0

Answer:

Given LHS = \frac{1}{secA-tanA}

secA−tanA

1

On rationalizing we get,

\frac{1}{secA-tanA} * \frac{secA+tanA}{secA+tanA}

secA−tanA

1

secA+tanA

secA+tanA

\frac{secA+tanA}{(secA-tanA)(secA+tanA)}

(secA−tanA)(secA+tanA)

secA+tanA

\frac{secA+tanA}{sec^2A-tan^2A}

sec

2

A−tan

2

A

secA+tanA

\frac{secA+tanA}{1}

1

secA+tanA

secA+tanA.

LHS = RHS.

Similar questions