1/secA-tanA = secA+tanA
Answers
Answered by
1
Answer:
Step-by-step explanation:
Given LHS = \frac{1}{secA-tanA}
On rationalizing we get,
\frac{1}{secA-tanA} * \frac{secA+tanA}{secA+tanA}
\frac{secA+tanA}{(secA-tanA)(secA+tanA)}
\frac{secA+tanA}{sec^2A-tan^2A}
\frac{secA+tanA}{1}
secA+tanA.
LHS = RHS.
Hope this helps!
Answered by
1
Answer:
Step-by-step explanation:
Given LHS = \frac{1}{secA-tanA}
On rationalizing we get,
\frac{1}{secA-tanA} * \frac{secA+tanA}{secA+tanA}
\frac{secA+tanA}{(secA-tanA)(secA+tanA)}
\frac{secA+tanA}{sec^2A-tan^2A}
\frac{secA+tanA}{1}
secA+tanA.
LHS = RHS.
Thus Proved
Hope That This Helped You!
Similar questions