Math, asked by vinodarmyji555, 11 months ago

1/secQ+tanQ =1-sinQ/cosQ​

Answers

Answered by glikhithabhargavi
0

Answer:

Step-by-step explanation:

Multiply and divide with secQ-tanQ

We get

secQ-tanQ/sec^2Q-tan^2Q

=secQ-tanQ

=1/cosQ -sinQ/cosQ

=1-sinQ/cosQ

Answered by ITzBrainlyGuy
0

QUESTION:

 \frac{1}{ \sec(q) +  \tan(q)  }  =   \frac{1 -  \sin(q) }{ \cos(q) }

FORMULAS USED:

(a+b)(a-b) = -b²

ANSWER:

In question taking LHS

multiply and divide with secQ - tanQ

 \frac{1}{ \sec(q)  +  \tan(q) }  \times   \frac{ \sec(q)  -  \tan(q)  }{ \sec(q) -  \tan(q)  }  \\  \\  =   \frac{ \sec(q)  -  \tan(q) }{ { \sec(q) }^{2} -  { \tan(q) }^{2}  }  \\  \\  =  \sec(q)  -  \tan(q)  \\  \\  =  \frac{1}{ \cos(q) }  -  \frac{ \sin(q) }{ \cos(q) }  \\  \\  =  \frac{1 -  \sin(q) }{ \cos(q) }

LHS=RHS

Similar questions