Math, asked by Gunner, 4 months ago

1-sectheta+tantheta/1+sectheta-tantheta= sectheta + tantheta-1/sectheta+tantheta+1​

Answers

Answered by MaheswariS
1

\textbf{To prove:}

\mathsf{\dfrac{1-sec\theta+tan\theta}{1+sec\theta-tan\theta}=\dfrac{sec\theta+tan\theta-1}{sec\theta+tan\theta+1}}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\dfrac{1-sec\theta+tan\theta}{1+sec\theta-tan\theta}}

\mathsf{Using,}\;\boxed{sec^2A-tan^2A=1}

\mathsf{=\dfrac{(sec^2\theta-tan^2\theta)-sec\theta+tan\theta}{(sec^2\theta-tan^2\theta)+sec\theta-tan\theta}}

\mathsf{=\dfrac{(sec\theta-tan\theta)(sec\theta+tan\theta)-(sec\theta-tan\theta)}{(sec\theta-tan\theta)(sec\theta+tan\theta)+(sec\theta-tan\theta)}}

\mathsf{=\dfrac{(sec\theta-tan\theta)[sec\theta+tan\theta-1]}{(sec\theta-tan\theta)[sec\theta+tan\theta+1]}}..

\mathsf{=\dfrac{sec\theta+tan\theta-1}{sec\theta+tan\theta+1}}

\implies\boxed{\mathsf{\dfrac{1-sec\theta+tan\theta}{1+sec\theta-tan\theta}=\dfrac{sec\theta+tan\theta-1}{sec\theta+tan\theta+1}}}

\textbf{Find more:}

If cos2x-cosx= sin4x - sinx(

where tan doesnot equal to 1) find value of cos3x - sin3x

https://brainly.in/question/19348427

Prove that 1-sin^2x/1+cotx-cos^2x/1+tanx=sinxcossx

https://brainly.in/question/4927186

Answered by mahek77777
7

\textbf{To prove:}

\mathsf{\dfrac{1-sec\theta+tan\theta}{1+sec\theta-tan\theta}=\dfrac{sec\theta+tan\theta-1}{sec\theta+tan\theta+1}}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\dfrac{1-sec\theta+tan\theta}{1+sec\theta-tan\theta}}

\mathsf{Using,}\;\boxed{sec^2A-tan^2A=1}

\mathsf{=\dfrac{(sec^2\theta-tan^2\theta)-sec\theta+tan\theta}{(sec^2\theta-tan^2\theta)+sec\theta-tan\theta}}

\mathsf{=\dfrac{(sec\theta-tan\theta)(sec\theta+tan\theta)-(sec\theta-tan\theta)}{(sec\theta-tan\theta)(sec\theta+tan\theta)+(sec\theta-tan\theta)}}

\mathsf{=\dfrac{(sec\theta-tan\theta)[sec\theta+tan\theta-1]}{(sec\theta-tan\theta)[sec\theta+tan\theta+1]}}..

\mathsf{=\dfrac{sec\theta+tan\theta-1}{sec\theta+tan\theta+1}}

\implies\boxed{\mathsf\red{\dfrac{1-sec\theta+tan\theta}{1+sec\theta-tan\theta}=\dfrac{sec\theta+tan\theta-1}{sec\theta+tan\theta+1}}}

Similar questions