Math, asked by vjygupta76pdpojf, 1 year ago

1/sectheta+tantheta = 1-sin theta /costheta

Answers

Answered by raja2511919
0

Answer:

this is your solution for the following information

Attachments:
Answered by Anonymous
0

It is proved that \frac{1}{\sec \theta +\tan \theta }=\frac{1-\sin \theta }{\cos \theta }

Step-by-step explanation:

Taking the LHS of equation, i.e., \frac{1}{\sec \theta +\tan \theta }</p><p>[tex]\Rightarrow \frac{1}{\sec \theta +\tan \theta }

\Rightarrow \frac{1}{\frac{1}{\cos\theta } +\frac{\sin \theta }{\cos \theta }}

\Rightarrow \frac{1}{\frac{1 + \sin \theta}{\cos\theta } }

\Rightarrow \frac{\cos\theta }{1 + \sin \theta}

By compendo and dividendo ,multiply numerator and denominator by  {1 - \sin \theta}

\Rightarrow \frac{\cos\theta \times\left ( 1 - \sin \theta \right ) }{\cos^{2} \theta}

\Rightarrow \frac{\left ( 1 - \sin \theta \right ) }{\cos \theta}[\tex]</strong></p><p><strong>It is proved that [tex]\frac{1}{\sec \theta +\tan \theta }=\frac{1-\sin \theta }{\cos \theta }

Similar questions