1/secx-tanx -1/cos = 1/cosx - 1/secx+tanx
Answers
Answered by
4
Answer:
QED
Step-by-step explanation:
1/(secx-tanx) - 1/cosx = 1/cosx - 1/(secx+tanx)
LHS = 1/(secx-tanx) - 1/cosx
= 1 /(1/cosx - sinx/cosx) - 1/cosx
= cosx/(1-sinx) - 1/cosx
= cosx(1+sinx)/(1-Sin²x) - 1/cosx
= cosx(1+sinx)/cos²x - 1/cosx
= (1+sinx)/cosx - 1/cosx
= (1/cosx)(1 + sinx - 1)
= Sinx/Cosx
= Tanx
RHS = 1/cosx - 1/(secx + tanx)
= 1/cosx - 1 /(1/cosx + sin/cosx)
= 1/cosx - Cosx/(1+sinx)
=1/cosx - Cosx(1-Sinx)/(1 -Sin²x)
=1/cosx - cosx(1-sinx)/cos²x
=1/cosx - (1-sinx)/cosx
=(1/cosx)(1 -1 +sinx)
= sinx/cosx
= tanx
LHS = RHS
QED
Answered by
1
Hence we have proved, the following question.
Attachments:
Similar questions