1. Show by commutative, associative and distributive laws that
(1) (a + b) = a + b + 2ab :
Answers
Answered by
1
Answer:
(a+b)²
= (a+b)×(a+b)
= (a+b)(a+b)
= [a×(a+b)]+[b×(a+b)]
= [a(a+b)]+[b(a+b)]
= [{(a×a)+(a×b)}] + [{(b×a)+(b×b)}]
= [(a²)+(ab)] + [(ba)+(b²)]
= (a²)+(ab)+(ba)+(b²)
Since a×b = b×a (commutative property), ba = ab.
= (a²)+(ab)+(ab)+(b²)
= (a²)+(2×ab)+(b²)
= (a²)+(2ab)+(b²)
Similar questions