Math, asked by Rajeshwari8025, 6 months ago

1) Show that, cot30° - cot75°/tan15° - tan60° = 1

2) If cotΘ = a/b, Find a secΘ - b cosecΘ​

Answers

Answered by ananyasharma427
15

Answer:

 \huge \boxed{ \fcolorbox{red}{pink}{answer}}

➡Show that, cot30° - cot75°/tan15° - tan60° = 1.......

Answer ;

as \: we \: know \: that \: \\ cot30  =  \cot(90 - 60)  \\  \cot(90 - 60)  = tan60 \\ similarily \\ \cot(75)  =  \cot(90 - 15)  = tan(15) \\   \frac{tan(60) - tan(15)}{tan(15) - tan(60)}   \\  - 1 \: answer

Hope I help you!!

Answered by RvChaudharY50
5

Question 1) :- Show that, cot30° - cot75°/tan15° - tan60° = (-1) .

Solution :-

we know that,

  • cotA = tan(90 - A)

So, changing both numerator value in tan, we get,

  • cot30° = tan(90° - 30°) = tan60°
  • cot75° = tan(90° - 75°) = tan15°

Putting both values now we get,

→ (tan60° - tan15°) / (tan15° - tan60°)

taking (-1) common from numerator now,

→ (-1)(tan15° - tan60°) / (tan15° - tan60°)

(-1) (Proved).

___________________

Question 2) :- If cotΘ = a/b, Find asecΘ - bcosecΘ

Solution :-

we know that ,

  • cotA = Base/Perpendicular
  • Base = a
  • perpendicular = b

So,

→ Hypotenuse = √(P² + B²) = √(a² + b²)

then,

  • secA = Hypotenuse / Base .
  • cosecA = Hypotenuse / Perpendicular .

So,

  • secΘ = √(a² + b²) / a
  • cosecΘ = √(a² + b²) / b

Putting both values we get,

→ a{√(a² + b²) / a} - b{√(a² + b²) / b}

[√(a² + b²) - √(a² + b²)] (Ans.)

Similar questions