1) Show that, cot30° - cot75°/tan15° - tan60° = 1
2) If cotΘ = a/b, Find a secΘ - b cosecΘ
Answers
Answered by
15
Answer:
➡Show that, cot30° - cot75°/tan15° - tan60° = 1.......
Answer ;
Hope I help you!!
Answered by
5
Question 1) :- Show that, cot30° - cot75°/tan15° - tan60° = (-1) .
Solution :-
we know that,
- cotA = tan(90 - A)
So, changing both numerator value in tan, we get,
- cot30° = tan(90° - 30°) = tan60°
- cot75° = tan(90° - 75°) = tan15°
Putting both values now we get,
→ (tan60° - tan15°) / (tan15° - tan60°)
taking (-1) common from numerator now,
→ (-1)(tan15° - tan60°) / (tan15° - tan60°)
→ (-1) (Proved).
___________________
Question 2) :- If cotΘ = a/b, Find asecΘ - bcosecΘ
Solution :-
we know that ,
- cotA = Base/Perpendicular
- Base = a
- perpendicular = b
So,
→ Hypotenuse = √(P² + B²) = √(a² + b²)
then,
- secA = Hypotenuse / Base .
- cosecA = Hypotenuse / Perpendicular .
So,
- secΘ = √(a² + b²) / a
- cosecΘ = √(a² + b²) / b
Putting both values we get,
→ a{√(a² + b²) / a} - b{√(a² + b²) / b}
→ [√(a² + b²) - √(a² + b²)] (Ans.)
Similar questions