1.Show that every positive integer is in the form of 3m, 3m+1,3m+2,where m is
any whole number.
Answers
Answer:
hope you understand..
Step-by-step explanation:
Let us consider a positive integer a
Divide the positive integer a by 3, and let r be the reminder and b be the quotient such that
a = 3b + r……………………………(1)
where r = 0,1,2,3…..
Case 1: Consider r = 0
Equation (1) becomes
a = 3b
On squaring both the side
a^2 = (3b)^2
a^2 = 9b^2
a^2 = 3 × 3b^2
a^2 = 3m
Where m = 3b^2
Case 2: Let r = 1
Equation (1) becomes
a = 3b + 1
Squaring on both the side we get
a^2 = (3b + 1)^2
a^2 = (3b)^2 + 1 + 2 × (3b) × 1
a^2 = 9b^2 + 6b + 1
a^2 = 3(3b^2 + 2b) + 1
a^2 = 3m + 1
Where m = 3b^2 + 2b
Case 3: Let r = 2
Equation (1) becomes
a = 3b + 2
Squaring on both the sides we get
a^2 = (3b + 2)^2
a^2 = 9b^2 + 4 + (2 × 3b × 2)
a^2 = 9b^2 + 12b + 3 + 1
a^2 = 3(3b^2 + 4b + 1) + 1
a^2 = 3m + 1
where m = 3b^2 + 4b + 1
∴ square of any positive integer is of the form 3m or 3m+1.
Hence proved.