1) Simplify :-
4√3/2 - √2 - 30/4√2 - √18 - √18/3 - √12
2) If (1/x - 1/y) ∝ 1/x - y, then show that (x² + y²) ∝ xy
Answers
Q1}
This problem is rather simpler:) You may calculate term wise by rationalising the denominator & then combine them. That'll be systematic….
[1] = (4√3) / (2-√2) = (4√3)(2+√2) / (2-√2)(2+√2)
= (8√3+4√6) /2
= 4√3+2√6 …………………(1)
[2]= 30 / (4√3-√18)
= 30*(4√3+√18) /(4√3-√18)(4√3+√18)
=( 120√3 +30√18) /(48–18)
= 30(4√3+√18) /30
= 4√3 + 3√2 ………………(2)
[3]= √18 / (3–2√3)
= √18(3+2√3) / (3–2√3) (3+2√3)
= (3√18+2√54) /9–12
= (9√2 + 6√6) /-3
= -3√2 -2√6 ………………(3)
Now by combining all 3 terms:
(4√3+2√6) — (4√3+3√2) — ( -3√2 -2√6)
= 4√3+2√6–4√3–3√2+3√2+2√6
= 2√6 + 2√6
= 4√6 ………….ANS
See the attachment for question 1)
Q2}
1/y-1/x∝1/x-y
Or (x-y)/xy=k×1/(x-y)(where k≠0)
Or (x-y)²=kxy
Or x²-2xy+y²=kxy
Or x²+y²=(k+2)xy
Or (x²+y²)/xy=k+2
Or x/y+y/x=k+2
Or (x/y)²+1=c(x/y) (where c=k+2 =constant)
Or (x/y)²-2(x/y)(c/2)+c²/4+1-c/4=0
Or (x/y-c/2)²=(c²/4)–1
Or x/y-c/2=±√(c²-4)/2
Or x/y=(c/2)±√(c²-4)/2
Or x/y=constant
Answer:
2-√2)(2+√2)
= (8√3+4√6) /2
= 4√3+2√6 …………………(1)
[2]= 30 / (4√3-√18)
= 30*(4√3+√18) /(4√3-√18)(4√3+√18)
=( 120√3 +30√18) /(48–18)
= 30(4√3+√18) /30
= 4√3 + 3√2 ………………(2)
[3]= √18 / (3–2√3)
= √18(3+2√3) / (3–2√3) (3+2√3)
= (3√18+2√54) /9–12
= (9√2 + 6√6) /-4
=-3√2 -2√6 ………………(3)
Now by combining all 3 terms:
(4√3+2√6) — (4√3+3√2) — ( -3√2 -2√6)
= 4√3+2√6–4√3–3√2+3√2+2√6
= 2√6 + 2√6
= 4√6 ………….ANS
}
1/y-1/x∝1/x-y
Or (x-y)/xy=k×1/(x-y)(where k≠0)
Or (x-y)²=kxy
Or x²-2xy+y²=kxy
Or x²+y²=(k+2)xy
Or (x²+y²)/xy=k+2
Or x/y+y/x=k+2
Or (x/y)²+1=c(x/y) (where c=k+2 =constant)
Or (x/y)²-2(x/y)(c/2)+c²/4+1-c/4=0
Or (x/y-c/2)²=(c²/4)–1
Or x/y-c/2=±√(c²-4)/2
Or x/y=(c/2)±√(c²-4)/2
Or x/y=constant