Math, asked by mercyrosymailapalli, 9 months ago

(1+sin∅)(1-sin∅)/(1+cos∅)(1-cis∅)​

Answers

Answered by Anonymous
6

Answer:

CORRECT QUESTION :

= \dfrac {(1 + sin \theta)(1 - sin \theta)}{(1 + cos \theta)(1 - cos \theta)}

SOLUTION :

= \dfrac {(1 + sin \theta)(1 - sin \theta)}{(1 + cos \theta)(1 - cos \theta)}

= \dfrac {1 - sin{(\theta)}^{2}}{(1 + cos \theta)} \times {(1 - cos \theta)}

= \dfrac {1 - sin {(\theta)}^{2}}{1 - cos {(\theta)}^{2}}

= \dfrac {cos {(\theta)}^{2}}{1 - cos {(\theta)}^{2}}

= \dfrac {cos {(\theta)}^{2}}{sin {(\theta)}^{2}}

= \dfrac {cos {(\theta)}^{2}}{sin {(\theta)}}</p><p>

=  cot {(\theta)}^{2}

We need to know,

\dfrac {sin (\theta)}{cos (\theta)} = tan \theta

\drac {cos (\theta)}{sin (\theta)} = </p><p>cot \theta

(a-b)(a+b) = {a}^{2} - {b}^{2}

Similar questions