Math, asked by abdullah4228, 1 year ago

1+sin/1-sin-1-sin/1+sin = 4 tan sec​

Answers

Answered by abiramukherjee21
2

Answer:

1+sinx/1-sinx - 1-sinx/1+sinx

=(1+sinx)²-(1-sinx)²/1-sin²x

4sinx/cos²x

=4tanx secx

Step-by-step explanation:

(1+sinx)²-(1-sinx)² is in a²-b²

so we write it as (a+b)(a-b) and get 2sin X and 1-sin²x=cos²x

Answered by payalchatterje
0

Answer:

Given,

 \frac{1  +   \sin(x) }{1  -  \sin(x) }  -  \frac{1 -  \sin(x) }{1 +  \sin(x) }

We are simplifying it,

 =  \frac{(1 +  \sin(x))(1 +  \sin(x))  }{(1 -  \sin(x))(1 +  \sin(x) ) }  -  \frac{(1  -  \sin(x))(1  -  \sin(x))  }{(1  +  \sin(x))(1  -  \sin(x) ) }

 =  \frac{ {(1 +  \sin(x)) }^{2} }{ {1}^{2} -   {sin}^{2} x  }  -  \frac{ {(1 -  \sin(x)) }^{2} }{ {1}^{2}  -  {sin}^{2}x }

 = \frac{ {(1 +  \sin(x)) }^{2} }{   {cos}^{2} x  }  -  \frac{ {(1 -  \sin(x)) }^{2} }{  {cos}^{2}x }

 =  \frac{ {1}^{2}  + 2 \sin(x) +  {sin}^{2}x -  {1}^{2}   + 2 \sin(x) +  {sin}^{2}x   }{ {cos}^{2}x }

 =  \frac{4 \sin(x) }{ {cos}^{2} x}  \\  = 4 \frac{ \sin(x) }{ \cos(x) }  \times  \frac{1}{ \cos(x) }  \\  = 4 \tan(x)  \sec(x)

Therefore,

 \frac{1  +   \sin(x) }{1  -  \sin(x) }  -  \frac{1 -  \sin(x) }{1 +  \sin(x) }  = 4 \tan(x)  \sec(x)

Here applied formula,

 {sin}^{2} x +  {cos}^{2} x = 1

Some more important trigonometry formula,

sin(x)  =  \cos(\frac{\pi}{2}  - x)  \\  \tan(x)  =  \cot(\frac{\pi}{2}  - x)  \\  \sec(x)  =  \csc(\frac{\pi}{2}  - x)  \\ \cos(x)  =  \sin(\frac{\pi}{2}  - x)  \\ \cot(x)  =  \tan(\frac{\pi}{2}  - x)  \\ \csc(x)  =  \sec(\frac{\pi}{2}  - x)

know more about Trigonometry,

https://brainly.in/question/8632966

https://brainly.in/question/11371684

#SPJ3

Similar questions