Math, asked by Rajeshwarindurkar, 1 year ago

√1-sin/1+sin=sec-tan

Attachments:

Answers

Answered by jmsbrothers
51
Heya!!✌

A good question from trigonometry,you have asked. Here is your answer.Please consider A as theta.
===============================
√1-sinA\√1+sinA
=> (√1-sinA×√1-sinA)\(√1+sinA ×√1-sinA)
=> √(1-sinA)²\ √1²-sin²A
=> 1-sinA\√cos²A [ 1-sin²A= cos²A]
=> 1-sinA\cosA
=> (1\cosA) - (sinA\cosA)
=> secA - tanA
[Showed]
================================
Friend, hope you can do this type of math after understanding this.

jmsbrothers: Welcome, Can you mark this as brainliest?
Rajeshwarindurkar: yes
jmsbrothers: So,please click on 'Mark as brainliest'..
Rajeshwarindurkar: where it is
jmsbrothers: It is on the top of my answer..
Rajeshwarindurkar: its not
jmsbrothers: ok........no problem
Answered by jitumahi435
54

To prove that: \sqrt{\dfrac{1-\sin \theta}{1+\sin \theta} } =\sec \theta-\tan \theta.

Solution:

L.H.S. = \sqrt{\dfrac{1-\sin \theta}{1+\sin \theta} }

To rationalizing denominator, we get

= \sqrt{\dfrac{1-\sin \theta}{1+\sin \theta} } × \sqrt{\dfrac{1-\sin \theta}{1-\sin \theta} }

Using the algebraic identity:

(a + b)(a - b) = a^{2} - b^{2}

= \sqrt{\dfrac{(1-\sin \theta)^2}{1^2-\sin^2 \theta} }

= \dfrac{1-\sin \theta}{\sqrt{1-\sin^2 \theta}}

Using the trigonometric identity:

\sin^2 A + \cos^2 A = 1

\cos^2 A = 1 - \sin^2 A

= \dfrac{1-\sin \theta}{\sqrt{\cos^2 \theta} }

= \dfrac{1-\sin \theta}{\cos \theta}

= \dfrac{1}{\cos \theta}-\dfrac{\sin \theta}{\cos \theta}

= \sec \theta-\tan \theta

= R.H.S., proved.

Thus, \sqrt{\dfrac{1-\sin \theta}{1+\sin \theta} } =\sec \theta-\tan \theta, proved.

Similar questions