Math, asked by rohanstarman, 11 months ago

(1 + sin^2 A )/cos^2 A= sec^4 A - tan^4 A​

Answers

Answered by Anonymous
5

Solution :-

 \frac{1 +  {sin}^{2} a}{ {cos}^{2} a}   =  {sec}^{4} a -  {tan}^{4} a \\

Let's take L.H.S. →

  = \frac{1 +  {sin}^{2} a}{ {cos}^{2} a}  \\

Divide multiply by (1 - sin²a)

 =  \frac{(1 +  {sin}^{2}a)(1 -  {sin}^{2}  a)}{ {cos}^{2}a(1 -  {sin}^{2} a) }  \\  \\  =  \frac{1 -  {sin}^{4}a }{ {cos}^{2}a \times  {cos}^{2} a }  \\  \\  =  \frac{1 -  {sin}^{4}a }{ {cos}^{4}a }  \\  \\   = \frac{1}{ {cos}^{4} a}  -  \frac{ {sin}^{4} a}{ {cos}^{4} a}  \\  \\  =  {sec}^{4} a -  {tan}^{4} a

R.H.S

Hence proved !!

Identity used :-

  •  {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

  • 1 -  {sin}^{2} a =  {cos}^{2} a

  •  \frac{1}{cos \: a}  = sec \: a \\

  •  \frac{sin \: a}{cos \: a}  = tan \: a \\
Similar questions