1+sin^2A =3sinAcosA, prove tanA =1 or 1/2 ?
Answers
Answered by
216
1+Sin²A= 3SinA Cos A.
Cos²A+Sin²A+Sin²A = 3SinA CosA [ 1 = Sin²+Cos A]
Cos²A+2Sin²A = 3SinA CosA....(1)
DIVIDE (1) BY COS²A we get,
1+2Tan²A = 3 TanA
1+2Tan²A - 3 TanA = 0
(2TanA-1) ( TanA-1) = 0
2TanA -1 = 0. TanA -1= 0
2TanA = 1. TanA =1
TanA = 1/2. TanA = 1
Cos²A+Sin²A+Sin²A = 3SinA CosA [ 1 = Sin²+Cos A]
Cos²A+2Sin²A = 3SinA CosA....(1)
DIVIDE (1) BY COS²A we get,
1+2Tan²A = 3 TanA
1+2Tan²A - 3 TanA = 0
(2TanA-1) ( TanA-1) = 0
2TanA -1 = 0. TanA -1= 0
2TanA = 1. TanA =1
TanA = 1/2. TanA = 1
kushagra52:
thank u
Answered by
128
Answer:
→ tanA = 1/2 or 1 .
Step-by-step explanation:
1 + sin²A = 3sinAcosA .
[ Dividing both side by cos²A ] .
==> (1 + sin²A)/(cos²A) = 3sinAcosA/cos²A .
==> sec²A + tan²A = 3tanA .
==> 1 + tan²A + tan²A = 3tanA .
==> 1 + tan²A + tan²A - 3tanA = 0 .
==> 2tan²A - 3tanA + 1 = 0 .
==> 2tan²A - 2tanA - tanA + 1 = 0 .
==> 2tanA( tanA - 1 ) - 1( tanA - 1 ) = 0 .
==> ( 2tanA - 1 ) ( tan A - 1 ) = 0 .
==> 2tanA - 1 = 0 or tan A - 1 = 0.
•°• tanA = 1/2 or 1 .
✔✔ Hence, it is proved ✅✅.
THANKS
Similar questions