Math, asked by pp02, 1 year ago

1-sin^2y/(1+cosy)+(1+cosy)/siny-siny/(1-cosy)


neosingh: can u put the image
neosingh: not clear
pp02: Ohk.

Answers

Answered by MaheswariS
9

\underline{\textsf{Given:}}

\mathsf{1-\dfrac{sin^2y}{1+cosy}+\dfrac{1+cosy}{siny}-\dfrac{siny}{1-cosy}}

\underline{\textsf{To simplify:}}

\mathsf{1-\dfrac{sin^2y}{1+cosy}+\dfrac{1+cosy}{siny}-\dfrac{siny}{1-cosy}}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{1-\dfrac{sin^2y}{1+cosy}+\dfrac{1+cosy}{siny}-\dfrac{siny}{1-cosy}}

\mathsf{=1-\dfrac{(1-cos^2y)}{1+cosy}+\dfrac{1+cosy}{siny}-\dfrac{siny}{1-cosy}}

\mathsf{=1-\dfrac{(1-cosy)(1+cosy)}{1+cosy}+\dfrac{1+cosy)(1-cosy)-sin^2y}{siny(1-cosy)}}

\mathsf{=1-(1-cosy)+\dfrac{(1-cos^2y)-sin^2y}{siny(1-cosy)}}

\mathsf{=1-1+cosy+\dfrac{sin^2y-sin^2y}{siny(1-cosy)}}

\mathsf{=cosy+\dfrac{0}{siny(1-cosy)}}

\mathsf{=cosy+0}

\mathsf{=cosy}

\implies\boxed{\mathsf{1-\dfrac{sin^2y}{1+cosy}+\dfrac{1+cosy}{siny}-\dfrac{siny}{1-cosy}=cosy}}

Similar questions