Math, asked by shiavm59, 10 days ago

1 + Sin 60+ cost 60 by
sign 30+ cost 30

Attachments:

Answers

Answered by Yoursenorita
3

SOLUTION:

 \\  \\  =  \frac{1 +  \sin(60)  +  \cos(60) }{ \sin(30) +  \cos(30)  } \\  \\  =  \frac{1  + \frac{ \sqrt{3} }{2} +  \frac{1}{2}  }{ \frac{1}{2}  +  \frac{ \sqrt{3} }{2} }  \\  \\  =  (\frac{2 +  \sqrt{3} \:  +  1}{2} ) \div ( \frac{1 +  \sqrt{3} }{2} ) \\  \\  =  \frac{3 +  \sqrt{3} }{1 +  \sqrt{3} }  \\  \\  =  \frac{(3 +  \sqrt{3}) \: (1 +  \sqrt{3}  )}{ {(1)}^{2} - ( { \sqrt{3} })^{2}  }  \\  \\  =  \frac{3(1 +  \sqrt{3} ) \sqrt{3} (1 +  \sqrt{3} )}{2}  \\  \\  =  \frac{3 +  3\sqrt{3} + \sqrt{3}   + 3 }{2}  \\  \\  =  \frac{6 + 4 \sqrt{3} }{2}  \\  \\  =  \frac{2(3 +  2\sqrt{3}) }{2}  \\  \\  = 3 + 2 \sqrt{3}  \:  \:  \:  \: answer

Attachments:
Answered by ItzStarling
1

Answer:

∴ ∠ABC = 90° [angle in semi circle] ---- (i)

Also, AD is a diameter of the circle with center O .

∴ ∠ABD = 90° [angle in semi circle] ---- (ii)

on adding Eqns, (i) and (ii) we get

⇒ ∠ABC + ∠ABD = 180°

So. CBD is a straight line.

Hence C, B and D are collinear . Hence proved.

Similar questions