Math, asked by ombuddy, 10 months ago

1+sin A/1-sin A = cosecA+1/cosecA-1​

Answers

Answered by Anonymous
9

Question:-

Prove that :-

  \bf{\frac{1 + sin \: </u><u>A</u><u>}{1 - sin \: </u><u>A</u><u>}  =  \frac{cosec \: </u><u>A</u><u> \:  + 1}{cosec \: </u><u>A</u><u> - 1} }

Formula used :-

  • sin A = 1/ cosec A

Solution:-

Firstly ,take left hand side →

 \implies \:  \frac{1 + sin \: A}{1 - sin \: A}  \\  \\  \bf{ \implies \frac{1 +  \frac{1}{cosec \: A} }{1 -  \frac{1}{cosec \: A} } } \\  \\  \implies \:  \bf{ \frac{ \frac{cosec \: A+ 1}{cosec \: A} }{ \frac{cosec \: A - 1}{cosec \: A} } } \\  \\  \bf{ \red{ \implies \:  \frac{cosec \: A + 1}{cosec \: A - 1} }}

Left hand side = Right hand side

Hence proved.

Answered by PIKACHU5455
2

Answer:

Solution:-

Firstly ,take left hand side →

\begin{gathered} \implies \: \frac{1 + sin \: A}{1 - sin \: A} \\ \\ \bf{ \implies \frac{1 + \frac{1}{cosec \: A} }{1 - \frac{1}{cosec \: A} } } \\ \\ \implies \: \bf{ \frac{ \frac{cosec \: A+ 1}{cosec \: A} }{ \frac{cosec \: A - 1}{cosec \: A} } } \\ \\ \bf{ \red{ \implies \: \frac{cosec \: A + 1}{cosec \: A - 1} }}\end{gathered}

1−sinA

1+sinA

1−

cosecA

1

1+

cosecA

1

cosecA

cosecA−1

cosecA

cosecA+1

cosecA−1

cosecA+1

Left hand side = Right hand side

Hence proved.

Similar questions