Math, asked by satyam9780, 11 months ago

√1+sin a/√1-sin a=sec a+tan au​

Answers

Answered by niharikam54
1

Answer:

hope this helps you.Mark me as BRAINLIEST if you got the correct answer

Attachments:
Answered by Anonymous
12

Question :

To prove

 \sqrt{ \frac{1  +   \sin(a) }{1  -  \sin(a) } }  =  \sec(a)  +  \tan(a)

Trignometric Formulas:

  1. sin²A + cos²A = 1
  2. sec²A - tan²A = 1
  3. cosec²A - cot²A = 1
  4. sec a =\frac{1}{cosa}
  5. cosec a=\frac{1}{sina}
  6. cot a = \frac{1}{tana}

Solution :

LHS

 =  \sqrt{ \frac{1 -  \sin(a) }{1 +  \sin(a) } }

Rationalise the denominator

 =  \sqrt{ \frac{1 -  \sin(a) }{1 +  \sin(a) }  \times  \frac{1 +  \sin(a) }{1  +  \sin(a) } }

we know that a²- b² = (a+b)(a-b

___________

 =  \sqrt{ \frac{(1 +  \sin(a)) {}^{2}  }{1 -  \sin {}^{2} (a) } }

we know ;sin²A +cos²A = 1

 =   \sqrt{ \frac{(1 +  \sin(a)) {}^{2}  }{ \cos {}^{2} (a) } }

 =  \frac{1 +  \sin(a) }{ \cos(a) }

 =  \frac{1}{ \cos(a) }  +  \frac{ \sin(a) }{ \cos(a) }

 =  \sec(a)  +   \tan(a)

RHS = sec a + tan a

⇒ LHS = RHS

\huge{\bold{ Hence\: Proved}}

__________________

More Trigonometry Formulas

  1. sin2A = 2 sinA cosA
  2. cos2A = cos²A - sin²A
  3. tan2A = 2 tanA / (1 - tan²A)

Similar questions