Math, asked by preetikushwaha340, 3 months ago

1+ sin A-COS A/1+sinA+cosA= √1-cosA/1+cosA

Answers

Answered by AestheticSky
44

let's solve R.H.S first

 \displaystyle \implies \sqrt{ \dfrac{1 -  \cos(x) }{1 +  \cos(x) } \times  \dfrac{1 -  \cos(x) }{1 -  \cos(x) }  }  \\   \implies  \sqrt{ \frac{ {(1 -  \cos \: x })^{2} }{ \sin ^{2} (x) } }  =  \frac{1 -  \cos(x) }{ \sin(x) }  \\     \implies\csc(x)  -  \cot(x)

Now, let's find the value of L.H.S

  \implies\ \dfrac{1 +  \sin(x) -  \cos(x)  }{1 +  \sin(x)  +  \cos(x) }  \\     \\   \implies\frac{ \dfrac{1 +  \sin(x) -  \cos(x)}{ \sin(x) } }{ \dfrac{1 +  \sin(x)  +  \cos(x)}{ \sin(x) } }  \\  \\     \implies\dfrac{\csc(x )  + 1 -  \cot(x) }{ \csc(x) + 1  +  \cot(x)  } \\  \\    \implies\frac{ \csc( x) -  \cot(x)  - ( \csc ^{2} (x) -  \cot ^{2} (x)  ) }{\csc(x) + 1  +  \cot(x) }  \\  \\   \implies \frac{ \csc(x) -  \cot(x) - ( \csc(x)  +  \cot(x) )( \csc(x)  -  \cot(x) )  }{\csc(x) + 1  +  \cot(x) }  \\  \\    \implies\frac{\csc(x)  -   \cot(x)( \cancel{\csc(x) + 1  +  \cot(x) )} }{ \cancel{\csc(x) + 1  +  \cot(x) } } \\  \\   \implies\csc(x)  -  \cot(x)

\sf\purple{since, L.H.S=R.H.S}

\sf\pink{Hence, proved}

hope it's beneficial :D

Similar questions