Math, asked by amitcool5989, 10 months ago

1-sin A/cos A = cosA/1+sinA

Answers

Answered by ButterFliee
5

GIVEN:

  • 1-sin A/cos A = cosA/1+sinA

TO FIND:

  • Evaluate

PROOF:

Taking L.H.S.

\rm{\dashrightarrow \dfrac{(1-sinA)}{cosA} }

Rationalising the denominator

\rm{\dashrightarrow \dfrac{(1-sinA)cos A}{cosA \times cos A} }

\rm{\dashrightarrow \dfrac{(1-sinA)cos A}{cos^2 A} }

Using Identity:-

  • sin²A + cos²A = 1
  • cos²A = 1 sin²A

\rm{\dashrightarrow \dfrac{(1-sinA)cos A}{1-sin^2 A} }

Using Identity:

  • = (a + b)(a b)

\rm{\dashrightarrow \dfrac{(1-sinA)cos A}{(1+sin A)(1-sin A)} }

\rm{\dashrightarrow \dfrac{\cancel{(1-sinA)}cos A}{(1+sin A)\cancel{(1-sin A)}} }

\bf{\dashrightarrow \dfrac{cos A}{1 + sin A} = R.H.S. }

\bf{\underline{\underline{ Hence \: proved}}}

______________________

Answered by TheSentinel
44

Question:

Prove that,

{\rm{\dfrac{1 - \sin(A) }{\cos(A)} = \dfrac{\cos(A)}{1 + \sin(A)}}}

To Find:

To prove that ,

{ \rm{ \dfrac{1 - \sin(A) }{\cos(A)} = \dfrac{\cos(A)}{1 + \sin(A)}}}

Proof:

LHS = {\rm{\dfrac{1 - \sin(A) }{\cos(A)}}}

Multiplying numerator and denominator by cos(A)

We get,

 : \implies \rm \dfrac{[ 1 - \sin(A) ] \times \cos(A)  }{\cos(A) \times \cos(A) } \\

 : \implies \rm \dfrac{[ 1 - \sin(A) ] \times \cos(A)  }{ { \cos}^{2} (A) }

We know,

{\large{\green{\boxed{\pink{\star{\rm{{ \sin}^{2} (A) + { \cos}^{2} (A) = 1 }}}}}}} \\

{\therefore{\pink{\underline{\green{\rm{{ \cos}^{2} (A) = 1 - { \sin}^{2} (A)}}}}}} \\

 : \implies \rm \dfrac{[ 1 - \sin(A) ] \times \cos(A)  }{ 1 - { \sin}^{2} (A) }

We also know,

{\large{\green{\boxed{\pink{\star{\rm{{ ( a - b}^{2} = ( a + b )( a - b)  }}}}}}} \\

{\therefore{\pink{\underline{\green{\rm{1 - { \sin}^{2} (A) = [ 1 + \sin(A)][1 - \sin(A)}}}}}} \\

 : \implies \rm \dfrac{[ 1 - \sin(A) ] \times \cos(A)  }{ [ 1 + \sin(A)][1 - \sin(A)] }

 : \implies \rm \dfrac{ \cancel{[ 1 - \sin(A) ] } \times \cos(A)  }{ \cancel{[ 1 + \sin(A)]} [1 - \sin(A)] }

  \therefore \rm \dfrac{ \cos(A)  }{ [ 1 + \sin(A)] }

HENCE IT IS PROVED .

____________________________________

{\large{\purple{\underline{\underline{\red{\bf{Formulae\:used :}}}}}}} \\

{\large{\pink{1)}}}{\large{\green{\boxed{\orange{\star{\rm{{ \sin}^{2} (A) + { \cos}^{2} (A) = 1 }}}}}}} \\

{\large{\pink{2)}}}{\large{\green{\boxed{\orange{\star{\rm{{ ( a - b}^{2} = ( a + b )( a - b)  }}}}}}} \\

Similar questions