Math, asked by ankitesh55, 1 month ago

(1+sinθ+cosθ/1+sinθ−cosθ​)²=1+cosθ/1−cosθ​

Attachments:

Answers

Answered by Anonymous
7

Step-by-step explanation:

 \rm LHS = [ \frac{1 + sin \theta - cos \theta}{1 + sin \theta + cos \theta} ]^{2}

 \rm =  \big[ \frac{(1 + sin \theta) - cos \theta}{(1 + sin \theta )+ cos \theta}  \big]^{2}

On rationalise the denominator :-

 \rm =  \big[ \frac{(1 + sin \theta) - cos \theta}{(1 + sin \theta )+ cos \theta} \times  \frac{{(1 + sin \theta) - cos \theta}}{{(1 + sin \theta) - cos \theta}}   \big]^{2}

 \rm =  \big[ \frac{((1 + sin \theta) - cos \theta)({(1 + sin \theta) - cos \theta)}}{((1 + sin \theta )+ cos \theta){((1 + sin \theta) - cos \theta)}}\big]^{2}

 \rm =  \big[ \frac{(1 + sin \theta)((1 + sin \theta) - cos \theta){ - cos \theta((1 + sin \theta) - cos \theta)}}{(1 + sin \theta )^{2}  -  (cos \theta)^{2} {}}\big]^{2}

 \rm =  \big[ \frac{(1 + sin \theta)(1 + sin \theta) - cos(1 + sin \theta){ - cos \theta(1 + sin \theta) - cos \theta( - cos \theta)}}{1 + sin^{2} \theta + 2sin \theta  -  cos^{2} \theta {}}\big]^{2}

\rm =  \big[ \frac{1 + sin^{2}  \theta+ 2sin \theta- cos  \theta - cos  \theta.sin \theta{ - cos \theta  - cos  \theta.sin \theta  +  cos^{2}  \theta}}{1-  cos^{2} \theta + sin^{2} \theta + 2sin \theta   }\big]^{2}

\rm =  \big[ \frac{1 + (sin^{2}  \theta+  cos^{2}  \theta)+ 2sin \theta- cos  \theta - cos \theta- cos  \theta.sin \theta- cos  \theta.sin \theta  }{ sin^{2} \theta + sin^{2} \theta + 2sin \theta   }\big]^{2}

\rm =  \big[ \frac{1 +1+ 2sin \theta-2 cos  \theta - 2cos  \theta.sin \theta  }{ 2sin^{2} \theta + 2sin \theta   }\big]^{2}

\rm =  \big[ \frac{2+ 2sin \theta - 2cos  \theta.sin \theta -2 cos  \theta }{ 2sin^{2} \theta + 2sin \theta   }\big]^{2}

\rm =  \big[ \frac{2(1 + sin \theta )- 2cos  \theta(sin \theta  + 1) }{ 2sin \theta (sin \theta  + 1)  }\big]^{2}

\rm =  \big[ \frac{(2- 2cos  \theta)(1 + sin \theta ) }{ 2sin \theta (sin \theta  + 1)  }\big]^{2}

\rm =  \big[ \frac{ \cancel2(1- cos  \theta)(1 + sin \theta ) }{  \cancel2sin \theta (sin \theta  + 1)  }\big]^{2}

\rm =  \big[ \frac{(1- cos  \theta) \cancel{(1 + sin \theta ) }}{ sin \theta \cancel{ (sin \theta  + 1)}  }\big]^{2}

\rm =  \big[ \frac{(1- cos  \theta)}{ sin \theta }\big]^{2}

\rm =  \frac{(1- cos  \theta)^{2} }{ sin^{2}  \theta }

\rm =  \frac{(1- cos  \theta)^{2} }{ 1 - cos^{2}  \theta } \:  \: ( \because \: 1 - cos^{2}  \theta =  {sin}^{2}  \theta)

\rm =  \frac{ \cancel{(1- cos  \theta)}(1- cos  \theta) }{  \cancel{(1 - cos  \theta)}(1 + cos \theta) } \:  \:  \{ \because \:  {a}^{2}  -  {b}^{2}  = (a - b)(a + b) \}

\rm =  \frac{ (1- cos  \theta) }{  (1 + cos \theta) }

 \rm  = RHS

Hence proved

Similar questions