Math, asked by Rajeshwari8025, 7 months ago

1) sinΘ + cosΘ = √2, Find Θ
2) cosecA - cotA = 1/2, Find cosΘ
3) cotΘ + tanΘ = 2 secΘ, FindΘ​

Answers

Answered by pulakmath007
15

SOLUTION

TO DETERMINE

1) Find Θ when sinΘ + cosΘ = √2

2) Find cosΘ when cosecΘ - cotΘ = 1/2

3) Find Θ when cotΘ + tanΘ = 2 secΘ

EVALUATION

1.

 \sf{ \sin \theta + \cos \theta = \sqrt{2} \: }

Squaring both sides we get

 \sf{ {\sin}^{2} \theta + {\cos}^{2} \theta +2 \sin \theta \: \cos\theta \: = 2}

 \implies \sf{ 1 +2 \sin \theta \: \cos\theta \: = 2}

 \implies \sf{2 \sin \theta \: \cos\theta \: = 1}

Now

 \sf{ {(\sin \theta - \cos \theta)}^{2} \: }

 = \sf{ {\sin}^{2} \theta + {\cos}^{2} \theta - 2 \sin \theta \: \cos\theta \: }

 = \sf{ 1 - 1\: }

 = \sf{0}

So

 \sf{ {(\sin \theta - \cos \theta)}^{2} \: } = 0

 \implies\sf{ {\sin \theta - \cos \theta} \: } = 0

 \implies\sf{ {\sin \theta = \cos \theta} \: }

 \implies\sf{ \tan \theta = 1}

 \displaystyle \boxed{ \sf{ \therefore \: \: \theta = \frac{\pi}{4} } \: \: \: }

2.

Clearly Cosθ # 0

If Cosθ = 0 then tanθ is undefined

Here it is given that

( Cosecθ - Cotθ ) = (1/2) ......... (1)

We are aware of the identity that

Cosec²θ - Cot²θ = 1

➙( Cosecθ + Cotθ ) ( Cosecθ - Cotθ) = 1

➙( Cosecθ + Cotθ ) ( 1/2) = 1

➙( Cosecθ + Cotθ ) = 2 ......... (2)

Solving Equation 1 and Equation 2 we get

Cosecθ = 5/4 and Cotθ = 3/4

So Cosθ

= Cotθ / Cosecθ

= 3/5

 \boxed{\displaystyle \sf{\cos \theta = \frac{3}{5} }}

3.

Here

 \displaystyle \sf{ \cot \theta \: + \tan \theta = 2 \sec \theta \: }

 \implies \displaystyle \sf{ \frac{ \cos \theta }{ \sin \theta } + \frac{ \sin \theta }{ \cos \theta } = \frac{2 }{ \cos\theta } \: }

 \implies \displaystyle \sf{ \frac{ {\cos}^{2} \theta + {\cos}^{2} \theta }{ \sin \theta \cos \theta} = \frac{2 }{ \cos\theta } \: }

 \implies \displaystyle \sf{ \frac{ 1}{ \sin \theta \cos \theta} = \frac{2 }{ \cos\theta } \: }

 \implies \displaystyle \sf{ \frac{ 1}{ \sin \theta } = 2 } \: ( \because \: \: cos \theta \ne \: 0 \: )

 \implies \displaystyle \sf{ { \sin \theta } = \frac{1}{2} } \:

 \boxed{\displaystyle \sf{ \therefore \: \: { \theta } = \frac{\pi}{6} } \: }

━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

What is the value of cos^2 31-sin^2 59

https://brainly.in/question/28163136

Answered by damakkhrera123
0

Answer:

please follow me my dear friend please ❤️❤️

Similar questions