1-sin e 1+ sin e seco - tano
Answers
Answer:
To prove that: \sqrt{\dfrac{1-\sin \theta}{1+\sin \theta} } =\sec \theta-\tan \theta.
1+sinθ
1−sinθ
=secθ−tanθ.
Solution:
L.H.S. = \sqrt{\dfrac{1-\sin \theta}{1+\sin \theta} }
1+sinθ
1−sinθ
To rationalizing denominator, we get
= \sqrt{\dfrac{1-\sin \theta}{1+\sin \theta} }
1+sinθ
1−sinθ
× \sqrt{\dfrac{1-\sin \theta}{1-\sin \theta} }
1−sinθ
1−sinθ
Using the algebraic identity:
(a + b)(a - b) = a^{2}a
2
- b^{2}b
2
= \sqrt{\dfrac{(1-\sin \theta)^2}{1^2-\sin^2 \theta} }
1
2
−sin
2
θ
(1−sinθ)
2
= \dfrac{1-\sin \theta}{\sqrt{1-\sin^2 \theta}}
1−sin
2
θ
1−sinθ
Using the trigonometric identity:
\sin^2 Asin
2
A + \cos^2 Acos
2
A = 1
⇒ \cos^2 Acos
2
A = 1 - \sin^2 Asin
2
A
= \dfrac{1-\sin \theta}{\sqrt{\cos^2 \theta} }
cos
2
θ
1−sinθ
= \dfrac{1-\sin \theta}{\cos \theta}
cosθ
1−sinθ
= \dfrac{1}{\cos \theta}-\dfrac{\sin \theta}{\cos \theta}
cosθ
1
−
cosθ
sinθ
= \sec \theta-\tan \thetasecθ−tanθ
= R.H.S., proved.
Thus, \sqrt{\dfrac{1-\sin \theta}{1+\sin \theta} } =\sec \theta-\tan \theta
1+sinθ
1−sinθ
=secθ−tanθ , proved.