Math, asked by jayshreek1923, 1 day ago

1+sin ø/1-sin ø under root​

Attachments:

Answers

Answered by Anonymous
6

Appropriate Question:-

Prove that:

 \sqrt{ \dfrac{1 +  \sin \theta}{1  -   \sin \theta} }  =  \sec \theta -  \tan \theta

Solution:

Consider LHS

 \implies \sqrt{ \dfrac{1 +  \sin \theta}{1  -   \sin \theta} }

Rationalise the denominator.

 \implies \sqrt{ \dfrac{1 +  \sin \theta}{1  -   \sin \theta} \times  \dfrac{1   +    \sin \theta}{1   +   \sin \theta}  }

 \implies \sqrt{ \dfrac{(1 +  \sin \theta)^{2} }{ {(1  -   \sin \theta)(1 +  \sin \theta)}}   }

 \implies \sqrt{ \dfrac{{(1   +    \sin \theta)}^{2}}{  1 - \sin^{2} \theta  }   }

 \implies \sqrt{ \dfrac{ {(1 +  \sin \theta)}^{2} }{ \cos^{2} \theta}}

 \implies\dfrac{1 + \sin \theta}{   \cos \theta }

 \implies\dfrac{1}{\cos \theta } +  \dfrac{ \sin \theta}{ \cos \theta}

 \implies\sec \theta +  \tan \theta

∴ LHS = RHS proved

Formula used:

  • (A + B)(A - B) = A² - B²
  • 1 - sin²x = cos²x
  • 1/cos x = sec x
  • (sin x)/(cos x) = tan x

Similar questions