Math, asked by mathews97, 9 months ago

(1 - sin theta) (1 + sin theta) / ( 1 + cos theta) (1- cos theta)​

Answers

Answered by amansinha072
1

Step-by-step explanation:

(1 - sin theta) (1 + sin theta) / ( 1 + cos theta) (1- cos theta)

(1 -  \sin {}^{2} theta) \div (1 -  \cos {}^{2} theta) \\  \ \\  \cos {}^{2}  theta \div  \sin  {}^{2} theta \\  \cot {}^{2} theta

Answered by Anonymous
0

\tt \cfrac{( 1 - \sin\:\theta)(1  +  \sin\:\theta)}{(1 + \cos\:\theta)(1-\cos\:\theta)}

  • (a + b)(a - b) = a² - b²

\sf \implies \cfrac{1 -  { \sin}^{2} \theta }{1 -  { \cos }^{2}  \theta}  \\  \\

  • 1 - sin² θ = cos² θ
  • 1 - cos² θ = sin² θ

\sf \implies \cfrac{ { \cos }^{2} \theta }{  \sin ^{2}  \theta}

  • cos² θ/sin² θ = cot²θ

\sf \implies { \cot }^{2}  \theta

\underline{\boxed{\rm{\purple{\therefore \cfrac{(1 - \sin\:\theta)(1+\sin\:\theta)}{(1+\cos\:\theta)(1-\cos\:\theta)} = \cot^{2}\:\theta}}}}\:\orange{\bigstar}

Similar questions