Math, asked by RenuSharma12, 1 day ago

√1+sin theta /√1-sin theta = ??
Pls answer it's really urgent
Ch - Introduction to Trigonometry
Class 10th ​

Answers

Answered by diwanamrmznu
15

given:-

 \implies \:  \frac{ \sqrt{1 +  \sin \theta } }{ \sqrt{1 -  \sin \theta } }  \\

find:-

  • given quantity value

★SOLUTION:-

 \implies \:   \frac{ \sqrt{1 +  \sin \theta } }{ \sqrt{1 -  \sin \theta } } \\

multiply numerator and denometer

 \implies \red{ \sqrt{1 +  \sin \theta} }

to We get

 \implies \:  \frac{ (\sqrt{1 +  \sin \theta) }( \sqrt{1 + \sin \theta } ) }{ (\sqrt{1 -  \sin \theta })( \sqrt{1 +  \sin \theta })   }  \\

we know that formula of

 \implies \star \pink{(a + b)(a - b) = a {}^{2}  - b {}^{2} } \\  \\

and

 \implies \star \pink{ \sqrt{a} . \sqrt{a} = a } \\

 \implies \:  \frac{1 +  \sin \theta }{√1 -  \sin {}^{2}  \theta }  \\

we know that formula of

 \implies \star\pink{1 -  \sin {}^{2}   \theta =  \cos \theta  }

 \implies \:  \frac{1 +  \sin \theta }{ \cos {}{}  \theta } \\

can we be written as

 \implies \:  \frac{1}{ \cos \theta }  +  \frac{ \sin \theta }{ \cos {}^{}  \theta }  \\

we know that

 \implies \star \pink{ \tan \theta =  \frac{ \sin \theta  }{ \cos  \theta}  } \\  \\ and \\  \\  \implies \star \pink{ \frac{1}{ \cos( \theta)  }  =  \sec\theta } \\  \\

 \implies \red{ \sec {}^{} \theta +  \tan \theta }

===============================

I hope it helps you

Similar questions