Math, asked by devanshimaloo83, 8 months ago

1+sin theta/1-sin theta= (sec theta+tan theta) ²​

Answers

Answered by mysticd
4

 LHS = \frac{(1+sin \theta )}{(1-sin \theta )}

 = \frac{(1+sin \theta )(1+sin \theta)}{(1-sin \theta )(1+sin \theta)}

 = \frac{(1+sin \theta )^{2}}{1^{2}-(sin \theta )^{2}}

 = \frac{(1+sin \theta )^{2}}{cos \theta ^{2}}

 = \Big( \frac{(1+sin \theta )}{cos \theta}\Big)^{2}

 = \Big( \frac{1}{cos \theta }+ \frac{sin \theta }{cos \theta } \Big)^{2}

= ( sec \theta + tan \theta )^{2}

 = RHS

Therefore.,

 \red{ \frac{(1+sin \theta )}{(1-sin \theta )}}

\green {= ( sec \theta + tan \theta )^{2} }

•••♪

Answered by 123brainly12
0

Answer:

\frac{(1+sin\alpha )}{1-sin\alpha } \\\\=\frac{sec\alpha+tan\alpha   }{sec\alpha-tan\alpha} \\\\=\frac{(sec\alpha+tan\alpha )^{2}   }{(sec\alpha)^2-(tan\alpha)^2} \\\\=\frac{(sec\alpha+tan\alpha )^{2}   }{1} \\\\                      

Step-by-step explanation:

Similar questions