Math, asked by ishwarigosavi01, 3 months ago

(1+sin theta)^2 + (1-cos theta)^2 = 3+2 (sin theta - cos theta)​

Answers

Answered by vaishubh1707
1

LHS   \\  =  {(1 +  \sin 0 ) }^{2}  +  {(1 -  \cos0 )}^{2}  \\  = 1 +  {sin}^{2} 0 + 2sin0 + 1 +  {cos}^{2}0 - 2cos0  \\  =1 + 1 +  {sin}^{2}0  +  {cos}^{2} 0 + 2sin0 - 2cos0 \\  = 2 + 1 +  2sin0 - 2cos0\\   = 3 + 2(sin0 - cos0)\\ =  RHS

Hence proved

Answered by brainlyhero98
0

Step-by-step explanation:

\boxed{ {sin}^{2} \theta +{cos}^{2} \theta =1}\\\\LHS=(1+sin \theta)^2 + (1-cos  \theta)^2 \\=  1 +2 sin\theta + {sin}^{2} \theta + 1 - 2cos  \theta +  {cos}^{2} \theta \\  = 2 + {sin}^{2} \theta +{cos}^{2} \theta + 2 sin\theta  -  2cos  \theta \\  =2 + 1 + 2 (sin\theta + cos  \theta ) \\  = 3 + 2(sin\theta + cos  \theta )\\=RHS\\   \\ hence \: it \: is \: proved

Similar questions