1/ sin theta + cos theta +. 1/ sin theta - cos theta. = 2 sin theta / 1-2 cos^theta
Answers
Answered by
2
Hi ,
I used A instead of theta .
LHS=1/( sinA + cosA) + 1/(sinA - cosA)
= (SinA-cosA +sinA+cosA)/(sinA+cosA)(sinA-cosA)
= 2sinA/ [ sin² A - cos² A)
= 2sinA/[-(cos² A- sin² A)]
= 2sinA / ( - cos2A)
= 2sinA / [ - ( 2cos²A- 1 ) ]
= 2sinA / ( 1 - 2cos²A)
= RHS
I hope this helps you.
:)
I used A instead of theta .
LHS=1/( sinA + cosA) + 1/(sinA - cosA)
= (SinA-cosA +sinA+cosA)/(sinA+cosA)(sinA-cosA)
= 2sinA/ [ sin² A - cos² A)
= 2sinA/[-(cos² A- sin² A)]
= 2sinA / ( - cos2A)
= 2sinA / [ - ( 2cos²A- 1 ) ]
= 2sinA / ( 1 - 2cos²A)
= RHS
I hope this helps you.
:)
janhavi1234:
thanks
Similar questions