Math, asked by Darkrers237, 8 months ago

1-sin theta / cos theta + cos theta / 1- sin theta = 2 sec theta​

Answers

Answered by RvChaudharY50
101

Sᴏʟᴜᴛɪᴏɴ :-

Taking LHS ,

→ (1 - sinA)/cosA + cosA/(1 - sinA)

Taking LCM ,

→ {(1 - sinA)² + cos²A}/cosA.(1 - sinA)

using (a - b)² = (a² + b² - 2ab) we get,

→ {1+sin²A - 2sinA + cos²A}/cosA.(1 - sinA)

using sin²A + cos²A = 1 in numerator now,

→ (1 + 1 - 2sinA)/cosA(1 - sinA)

→ (2 - 2sinA)/cosA(1 - sinA)

Taking 2 common from numerator now,

→ 2(1 - sinA)/cosA(1 - sinA)

→ 2/cosA

Putting (1/cosA) = secA in Last ,

→ 2secA = RHS (Proved).

Answered by Anonymous
32

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  \dagger \: {\sf{  \frac{1 - sin \theta}{cos \theta} +  \frac{cos \theta}{1 - sin \theta}   = 2sec \theta \: }} \\ \\

{\bf{\blue{\underline{Now:}}}}

Take L.H.S,

 {\sf{ L.H.S =  \frac{1 - sin \theta}{ \cos \theta}  +  \frac{cos \theta}{1 - sin \theta} }} \\ \\

 {\sf{  =  \frac{(1 - sin \theta)(1 - sin \theta) +  (cos \theta)(cos \theta }{(cos \theta )\:(1 - sin \theta) } }} \\ \\

{\sf{  =  \frac{( {1 - sin \theta) ^{2}  +  {cos}^{2} \theta } }{cos \theta \: (1 - sin \theta)}  }} \\ \\

 \dagger \boxed{\sf{ \purple{(x - y) ^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy} }} \\ \\

 {\sf{  = \frac{  ({1}^{2}  +  {sin}^{2} \theta - 2sin \theta ) +  {cos}^{2}  \theta}{cos \theta(1 - sin \theta)} }} \\ \\

 {\sf{  = \frac{  {1}^{2}  +  ({sin}^{2} \theta  +  {cos}^{2} \theta) - 2sin \theta }{cos \theta(1 - sin \theta)} }} \\ \\

 \dagger \boxed{\sf{ \purple{cos ^{2}  \theta  +  {sin}^{2} \theta = 1} }} \\ \\

 {\sf{  = \frac{  {1} + 1 - 2sin \theta }{cos \theta(1 - sin \theta)} }} \\ \\

 {\sf{  = \frac{  2- 2sin \theta }{cos \theta(1 - sin \theta)} }} \\ \\

 {\sf{  = \frac{  2(1- sin \theta) }{cos \theta(1 - sin \theta)} }} \\ \\

 {\sf{  = \frac{  2 \cancel{(1- sin \theta)} }{cos \theta \cancel{(1 - sin \theta)}} }} \\ \\

 {\sf{  = \frac{  2 }{cos \theta } }} \\ \\

 {\sf{  = 2sec\theta}} \\ \\

Hence L.H.S = R.H.S


RvChaudharY50: Perfect ❤️
Similar questions