Math, asked by kashish151, 1 year ago

1 - sin theta + cos theta ka whole square is equal to 2 bracket start 1 + cos theta bracket close then break it start 1 - sin theta bracket close to this identity

Answers

Answered by Dj06
90

Answer:

Step-by-step explanation:

Attachments:
Answered by mysticd
29

Solution:

LHS = (1-sin\theta+cos\theta)^{2}

= 1^{2}+sin^{2}\theta+cos^{2}\theta\\+2\times1\times(-sin\theta)\\+2\times(-sin\theta)\times cos\theta\\+2\times cos\theta\times1

________________________

By algebraic identity,

(a+b+c)²

=+++2ab+2bc+2ca

_________________________

= 1+sin^{2}\theta+cos^{2}\theta\\-2sin\theta-2sin\theta cos\theta+2cos\theta

= 1+1+2cos\theta-2sin\theta-2sin\theta cos\theta

\* By Trigonometric identity:*\

\boxed {sin^{2}\theta+cos^{2}\theta=1}

= 2+2cos\theta-2sin\theta-2sin\theta cos\theta

= 2(1+cos\theta)-2sin\theta(1+cos\theta)

= 2(1+cos\theta)(1-sin\theta)

= RHS

Therefore,.

(1-sin\theta+cos\theta)^{2} = 2(1+cos\theta)(1-sin\theta)

••••

Similar questions