1+sin theta divided by 1-sin theta= (sec theta+tan theta) whole square
Answers
Answered by
0
Theta is written as A.
Answer:
( 1 + sinA ) / ( 1 - sinA ) = ( secA + tanA )^2
Step-by-step explanation:
Left Hand Side :
= > ( 1 + sinA ) / ( 1 - sinA )
Dividing and multiply by ( 1 + sinA ) :
= > { ( 1 + sinA ) / ( 1 - sinA ) } x { ( 1 + sinA ) / ( 1 + sinA ) }
= > { ( 1 + sinA )^2 } / { ( 1 - sinA ) ( 1 + sinA ) }
= > { ( 1 + sinA )^2 } / { ( 1 )^2 - ( sinA )^2 } { Using ( a + b )( a - b ) }
= > { ( 1 + sinA )^2 } ) { 1 - sin^2 A }
From the properties of trigonometry :
- 1 - sin^2 B = cos^2' B
= > { ( 1 + sinA )^2 } / ( cos^2 A )
= > [ ( 1 + sinA ) / cosA ]^2
= > [ 1 / cosA + sinA / cosA ]^2
= > ( secA + tanA )^2
Left Hand Side = Right Hand Side.
Hence, proved.
Similar questions