1 + sin theta minus cos theta by 1 + sin theta + cos theta whole square equal to 1 minus cos theta by 1 + cos theta
Answers
Step-by-step explanation:
LHS
(\frac{1+sin\theta -cos\theta}{1+sin\theta + cos\theta })^2(
1+sinθ+cosθ
1+sinθ−cosθ
)
2
Expending Numerator and Denominator using
(a + b + c )² = a² + b² + c² + 2ab + 2bc +2ca
\begin{lgathered}\frac{1+sin^2 \theta + cos^2 \theta + 2 sin\theta -2sin\theta cos\theta - 2 cos\theta}{1+sin^2\theta + cos^2\theta + 2 sin\theta +2sin\theta cos\theta +2 cos\theta} \\\end{lgathered}
1+sin
2
θ+cos
2
θ+2sinθ+2sinθcosθ+2cosθ
1+sin
2
θ+cos
2
θ+2sinθ−2sinθcosθ−2cosθ
∵ sin² Ф + cos² Ф = 1
\begin{lgathered}\frac{1+ 1 + 2 sin\theta -2sin\theta cos\theta - 2 cos\theta}{1+1 + 2 sin\theta +2sin\theta cos\theta +2 cos\theta} \\\end{lgathered}
1+1+2sinθ+2sinθcosθ+2cosθ
1+1+2sinθ−2sinθcosθ−2cosθ
\begin{lgathered}\frac{2 + 2 sin\theta -2sin\theta cos\theta - 2 cos\theta}{2 + 2 sin\theta +2sin\theta cos\theta +2 cos\theta} \\\end{lgathered}
2+2sinθ+2sinθcosθ+2cosθ
2+2sinθ−2sinθcosθ−2cosθ
Taking 2 common from first two terms and 2 cosФ from last two terms in both numerator and denominator
\begin{lgathered}\frac{2(1 + sin\theta) -2cos\theta(1+sin\theta)}{2(1 + sin\theta) +2cos\theta(1+sin\theta)} \\\end{lgathered}
2(1+sinθ)+2cosθ(1+sinθ)
2(1+sinθ)−2cosθ(1+sinθ)
\frac{(1+sin\theta)(2 - 2 cos\theta)}{(1+sin\theta)(2+2cos\theta)}
(1+sinθ)(2+2cosθ)
(1+sinθ)(2−2cosθ)
\begin{lgathered}\frac{2(1-cos\theta)}{2(1+cos\theta)} \\\end{lgathered}
2(1+cosθ)
2(1−cosθ)
\frac{(1-cos\theta)}{(1+cos\theta)} = RHS
(1+cosθ)
(1−cosθ)
=RHS