Math, asked by shwetesh3864, 1 year ago

1-sin theta upon 1+sin theta = (sec theta -tan theta ) hole square






Answers

Answered by ihrishi
1

Answer:

lhs =  \frac{1 -  \sin( \alpha ) }{1 +  \sin( \alpha ) }  \\ multiplying \: nr \: and \: dr \: by \: 1 -  \sin( \alpha )  \\ =  \frac{1 -  \sin( \alpha ) }{1 +  \sin( \alpha ) } \times \frac{1 -  \sin( \alpha ) }{1  -  \sin( \alpha ) } \\  =   \frac{ {(1 -  \sin( \alpha ) )}^{2} }{1 -  { \sin }^{2}  \alpha }  =  \frac{1  -   {  \sin  }^{2}  \alpha  +2 \sin( \alpha )  }{  { \cos}^{2}  \alpha  }  \\  =  { \sec}^{2}  \alpha  -   { \tan}^{2}  \alpha  - 2 \sec( \alpha )  \tan( \alpha )  \\ =  ({ \sec( \alpha )  -  \tan( \alpha ) })^{2}   \\  = rhs

Similar questions