(1+sin tita) (1-sin tita) / (1+cos tita) (1-cos tita
Answers
Step-by-step explanation:
Hope this will help you...Please mark this answer as the brainliest...
Answer:
cot^2 theta
(1 + sin theta)(1 - sin theta) / (1 + cos theta)(1 - cos theta) = cot^2 theta
Step-by-step explanation:
Given,
(1 + sin theta)(1 - sin theta) / (1 + cos theta)(1 - cos theta) =
We know that,
(a + b)(a - b) = a^2 - b^2
On applying this identity, we get,
= (1 - sin^2 theta) / (1 - cos^2 theta)
Also,
sin^2 theta + cos^2 theta = 1
Then, we can derive,
sin^2 theta = 1 - cos^2 theta
cos^2 theta = 1 - sin^2 theta
On applying this in the equation, we get,
= cos^2 theta / sin^2 theta
We know that,
cot theta = cos theta / sin theta
Then,
cos^2 theta / sin^2 theta = cot^2 theta
Hence,
(1 + sin theta)(1 - sin theta) / (1 + cos theta)(1 - cos theta) = cot^2 theta