Math, asked by TbiaSupreme, 1 year ago

1/sin x√cos³x ,Integrate the given function defined on proper domain w.r.t. x.

Answers

Answered by MaheswariS
3

Answer:

\bf\int{sinx\,\sqrt{cos^3x}}\,dx=-\frac{2}{5}\,cos^{\frac{5}{2}}x+c

Step-by-step explanation:

I have applied substituition method to solve the given integral.

\bf\int{sinx\,\sqrt{cos^3x}}\,dx

\text{Let I}=\int{sinx\,\sqrt{cos^3x}}\,dx

\text{Take }t=cosx

\frac{dt}{dx}=-sinx

-dt=sinx\,dx

\text{Now}

I=\int{\sqrt{t^3}}\,(-dt)

I=-\int{t^{\frac{3}{2}}}\,dt

I=-\frac{t^{\frac{5}{2}}}{\frac{5}{2}}+c

I=-\frac{2}{5}t^{\frac{5}{2}}+c

I=-\frac{2}{5}\,cos^{\frac{5}{2}}x+c

Answered by CarliReifsteck
0

Given that,

The function is

\sin x\sqrt{\cos^{3}x}

We need to find the integration

Using substitute method  

I=\int{\sin x\sqrt{\cos^{3}x}}...(I)

Let t=\cos x

On differentiating w.r.to x

\dfrac{dt}{dx}=-\sin x

dt=-\sin x dx

-dt=\sin x dx

Put the value in the equation (I)

I=\int{(t)^3(-dt)}

I=-\int{t^{\frac{3}{2}dt}

I=-\dfrac{t^{\frac{5}{2}}}{\dfrac{5}{2}}+C

I=-\dfrac{2}{5}t^{\frac{5}{2}}+C

Put the value of t

I=-\dfrac{2}{5}\cos^{\frac{5}{2}}x+C

Hence,  The integration is -\dfrac{2}{5}\cos^{\frac{5}{2}}x+C

Similar questions