1+sin2a/1-sin2a=(1+tana/1-tana)^2
Answers
Answered by
2
Step-by-step explanation:
1+sin2a/1-sin2a=(1+tana/1-tana)^2
taking RHS
[(1+ tanA)/(1-tanA)]²
[(1+sinA/cosA)/(1-sinA/cosA)]²
[{(cosA+ sinA)/cosA}/{(cosA+ sinA)/cosA}]²
{cosA+sinA}²/{cosA-sinA}²
( sin²A+cos²A+2sinAcosA)/( sin²A+cos²A+2sinAcosA)
( 1+2sinAcosA)/(1-2sinAcosA)
2sinAcosA= sin2A
(1+sin2A)/(1-sin2A)
Answered by
0
Step-by-step explanation:
cos2A /1-sin2A = 1+tanA/1-tanA
Note
- cos2A= cos (square) A + sin ( square) A
- 1= cos(square) theta + sin (square) theta.
- sin2A =2cosA.sinA.
cos(square) A + sin (square) A / cos (square )A - 2cosA.sinA = cosA+ sin A/ cosA - sin A [ divid by cosA]
cosA / cosA + sinA / cosA / cosA / cosA - sinA / cosA = 1+ sinA/ cosA / 1- sinA / cosA
Answer : 1+ tanA/1- tanA = R.H.S
Similar questions
Math,
3 months ago
Social Sciences,
3 months ago
English,
3 months ago
English,
6 months ago
English,
11 months ago
Political Science,
11 months ago
Geography,
11 months ago