Math, asked by pramodbr4, 11 months ago

(1-sin²A)(1+tan²A)=1​

Answers

Answered by Anonymous
1

Answer:

(1 - sin²A) (1 + tan²A) = LHS

(cos²A) × (sec²A)

(1/sec²A) × sec²A

sec²A / sec²A

= 1 = RHS

Therefore, (1 - sin²A) (1 + tan²A) = 1

since LHS = RHS

Answered by saharounak093
2

Answer:

Step-by-step explanation:sin^2A+cos^2A=1

So 1-sin^2A=cos^2A &

sec^A-tan^2A=1

1+tan^2A=sec^2A

So cos^2A×sec^2A

sec^2A=1/cos^2A

cos^2A×1/cos^2A=1

Similar questions