(1-sin²A)(1+tan²A)=1
Answers
Answered by
1
Answer:
(1 - sin²A) (1 + tan²A) = LHS
(cos²A) × (sec²A)
(1/sec²A) × sec²A
sec²A / sec²A
= 1 = RHS
Therefore, (1 - sin²A) (1 + tan²A) = 1
since LHS = RHS
Answered by
2
Answer:
Step-by-step explanation:sin^2A+cos^2A=1
So 1-sin^2A=cos^2A &
sec^A-tan^2A=1
1+tan^2A=sec^2A
So cos^2A×sec^2A
sec^2A=1/cos^2A
cos^2A×1/cos^2A=1
Similar questions