Math, asked by pramodbr4, 11 months ago

(1-sin²A)(1+tan²A)=1​

Answers

Answered by Anonymous
1

Solution- (1-sin²A)( 1+Tan²A) =

=(Cos²A)(1+ sin²A/Cos²A)

= (Cos²A)(Cos²A + Sin²A / Cos²A)

= Cos²A + Sin²A

= 1

Answered by Anonymous
50

L.H.S:-

(1-sin²A)(1+tan²A)

{•°• sin²A+cos²A=1 => cos²A=1-sin²A}

{•°• 1+tan²A=sec²A}

=>(cos²A)(sec²A)

=>(cos²A)(1/cos²A) {•°• secA=1/cosA}

=>1

=> R.H.S

HENCE, proved

follow, like and make brainlist ☺️

Similar questions