Math, asked by ay8752574, 1 month ago

1- sin2a/cos2a = tan ( 45 - a)

Answers

Answered by mathdude500
4

\large\underline{\sf{To\:prove - }}

\boxed{ \rm{ \: \frac{1 - sin2a}{cos2a}  = tan(45 \degree \:  -  \: a)}}

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

\underbrace{\boxed{ \tt{ sin2x = 2sinxcosx\: }}}

\underbrace{\boxed{ \tt{1 - cos2x \: =  \:  {2sin}^{2}x}}}

\underbrace{\boxed{ \tt{sin(90 \degree - x) = cosx \: }}}

\underbrace{\boxed{ \tt{cos(90 \degree - x) = sinx \: }}}

\Large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:\dfrac{1 - sin2a}{cos2a}

can be rewritten as

\rm \:  =  \:  \: \dfrac{1 - cos(90 \degree - 2a)}{sin(90 \degree - 2a)}

Let assume that 90° - 2a = 2x so that 45° - a = x

\rm \:  =  \:  \: \dfrac{1 - cos2x}{sin2x}

\rm \:  =  \:  \: \dfrac{ {2sin}^{2} x}{2sinxcosx}

\rm \:  =  \:  \: \dfrac{ \cancel{2} \:\cancel{ sinx} \: sinx}{\cancel{2} \: \cancel{sinx} \: cosx}

\rm \:  =  \:  \: \dfrac{sinx}{cosx}

\rm \:  =  \:  \: tanx

On substituting the value of x = 45° - a, we get

\rm \:  =  \:  \: tan(45 \degree - a)

Hence,

  \:  \:  \:  \: \underbrace{\boxed{ \bf{ \qquad\: \frac{1 - sin2a}{cos2a}  = tan(45 \degree \:  -  \: a) \qquad}}}

Additional Information :-

\underbrace{\boxed{ \tt{cos2x = 1 -  {2sin}^{2}x  \: }}}

\underbrace{\boxed{ \tt{cos2x ={2cos}^{2}x - 1  \: }}}

\underbrace{\boxed{ \tt{cos2x =  \frac{1 -  {tan}^{2}x}{1 +  {tan}^{2}x}  \: }}}

\underbrace{\boxed{ \tt{sin2x =  \frac{2{tan}x}{1 +  {tan}^{2}x}  \: }}}

\underbrace{\boxed{ \tt{tan2x =  \frac{2{tan}x}{1 - {tan}^{2}x}  \: }}}

\underbrace{\boxed{ \tt{sin3x\: =  \: 3sinx -  {4sin}^{3}x}}}

\underbrace{\boxed{ \tt{cos3x =  {4cos}^{3}x - 3cosx}}}

Similar questions