1 . sin4A = cos(A-20°)
2. Sin38°/Cos52° = sin38° - sin(90°-52°)
3. cos80°/sin10° + cos59° cosec401°
4. sinø + cos ø = √2 . cos ( 90°-ø)
5. sec70° . sin20° - cos20° . cosec70°
Answers
Solutions
Q.1. sin4A = cos(A-20°)
=> cos ( 90°-4A) = cos(A-20°)
•
• • [ sin Ø = cos(90°- Ø) ]
=> 90° - 4A = A - 20°
=> 5A = 110°
=> A = 110°/5 = 22°
_____________________
Q . 2. sin38° - cos52° = sin38° - sin(90°-52°)
=> sin 38° - sin 38°
=> 0 [ As, ( cos A = sin(90°-A) ) ]
_____________________
Q.3. cos80°/sin10° + cos59° cosec31°
- using sin(90°-Ø ) = cosØ , we get ;
=> sin10° = sin(90°-80°) = cos 80° and cos59° = cos(90°-31°) = sin 31 °
- Thus , cos80°/sin80° + sin31° cosec31°
=> 1 + 1/cosec31° × cosec 31°
=> 1+1 = 2
____________________
Q.4. sin Ø + cosØ = √2 . cos ( 90°- Ø )
=> sin Ø + cos Ø = √2 sin Ø
=> cos Ø = √2 sin Ø - sin Ø
=> cos Ø = (√2-1)sinØ
=> cos Ø / sin Ø = √2-1
=> cot Ø = √2 - 1
____________________
Q.5. sec70° . sin20° - cos20° . cosec70°
=> cosec ( 90° - 70° ) . sin20° - cos30° . sec(90°-70°)
=> cosec 20° × 1/cosec20° - 1/sec20° × sec20°
=> 1 - 1 = 0