Math, asked by depesh45, 9 months ago

1-sin60°/ cos60° = tan60°-1/ tan60°+1 prove it ​

Answers

Answered by stranger9
1

Answer:

☝☝☝☝☝

Step-by-step explanation:

HOPE IT HEPLS

Attachments:
Answered by Anonymous
8

Given :-

\sf\dfrac{1 - sin 60°}{cos 60°} = \dfrac{tan60°-1}{tan 60° + 1}

To Prove :-

\sf\dfrac{1 - sin 60°}{cos 60°} = \dfrac{tan 60°-1}{tan 60° + 1}

Formula to be used :-

 (a-b)^2 = a^2 + b^2 - 2ab

 a^2 - b^2 = (a+b)(a-b)

Notes :-

 sin 60° = \dfrac{\sqrt{3}}{2}

 cos 60° = \dfrac{1}{2}

 tan 60° = \sqrt 3

Solution :-

L.H.S

\implies\sf\dfrac{1 - sin 60°}{cos 60°}

Now put the value of sin 60° and cos 60°.

\implies\sf\dfrac{1-\dfrac{\sqrt 3 }{2}}{\dfrac{1}{2}}

\implies\sf\dfrac{\dfrac{2-\sqrt 3}{2}}{\dfrac{1}{2}}

\implies\sf\dfrac{2 - \sqrt 3}{\cancel 2}\times\dfrac{\cancel 2}{1}

\implies\sf 2 - \sqrt 3

R.H.S

\dfrac{tan60°-1}{tan 60° + 1}

=  \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }  \\  \\

( Put the value of tan 60° and rationalize the denominator)

\implies\sf\dfrac{\sqrt 3^2 + 1^2 - 2\times\sqrt 3 \times 1 }{\sqrt 3 ^2 - 1^2}

\implies\sf\dfrac{3 + 1 - 2\sqrt 3 }{ 3  - 1 }

\implies\sf\dfrac{4 - 2\sqrt 3 }{ 2 }

\implies\sf\dfrac{\cancel2(2 - \sqrt 3)}{ \cancel 2 }

\implies\sf 2 - \sqrt 3

Now, compare both sides

\implies\sf 2 - \sqrt 3 = \implies\sf 2 - \sqrt 3

L.H.S = R.H.S

Hence, proved.

Similar questions